Cglfnplete

Reference

Classes .

812 (++: The Complete Reference

standard template library (STL). Containers are the part of the STL that provide

This chapter describes the classes that implement the containers defined by the

storage for other objects. In addition to supplying the memory necessary to store
objects, they define the mechanisms by which the objects in the container may be accessed.

Thus, containers are high-level storage devices.

Note l For an overview and tutorial to the STL, refer to Chapter 24.

In the container descriptions, the following conventions will be observed. When
referring to the various iterator types generically, this book will use the terms listed here.

Term Represents

Bilter Bidirectional iterator
Forlter Forward iterator

Inlter Input iterator

Outlter Output iterator
Randlter Random access iterator

When a unary predicate function is required, it will be notated using the type
UnPred. When a binary predicate is required, the type BinPred will be used. Ina
binary predicate, the arguments are always in the order of first,second relative to the
function that calls the predicate. For both unary and binary predicates, the arguments
will contain values of the type of objects being stored by the container.

Comparison functions will be notated using the type Comp.

One other point: In the descriptions that follow, when an iterator is said to point
to the end of a container, this means that the iterator points just beyond the last object

in the container.

___| The Container Classes

The containers defined by the STL are shown here.

Container Description
bitset A set of bits.
deque A double-ended queue.

list A linear list.

Required Header

<bitset>
<deque>

<list>

Chapter 33: The STL Container Classes

Container Description Required Header
map Stores key/value pairs in <map>

which each key is associated

with only one value.
multimap Stores key/value pairs in which <map>

one key may be associated with

two or more values.
multiset A set in which each element is <set>

not necessarily unique.
priority_queue A priority queue. <queue>
queue A queue. <queue>
set A set in which each element <set>

is unique.
stack A stack. <stack>
vector A dynamic array. <vector>

Each of the containers is summarized in the following sections. Since the containers
are implemented using template classes, various placeholder data types are used. In
the descriptions, the generic type T represents the type of data stored by a container.

Since the names of the placeholder types in a template class are arbitrary, the container
classes declare typedefed versions of these types. This makes the type names concrete.
Here are the typedef names used by the container classes.

size_type Some integral type roughly equivalent to size_t.

reference A reference to an element.
const_reference A const reference to an element.
difference_type Can represent the difference between two addresses.
iterator An iterator.
const_iterator A const iterator.
reverse_iterator A reverse iterator.

const_reverse_iterator A const reverse iterator.

813

814 C++: The Complete Reference

value_type The type of a value stored in a container. (Often the
same as the generic type T.)

allocator_type The type of the allocator.

key type The type of a key.

key_compare The type of a function that compares two keys.

mapped_type The type of value stored in a map. (Same as the
generic type T.)

value_compare The type of a function that compares two values.

pointer The type of a pointer.

const_pointer The type of a const pointer.

container_type The type of a container.

bitset

The bitset class supports operations on a set of bits. Its template specification is
template <size_t N> class bitset;

Here, N specifies the length of the bitset, in bits. It has the following constructors:
bitset();
bitset(unsigned long bits);
explicit bitset(const string &s, size_t i = 0, size_t num = npos);

The first form constructs an empty bitset. The second form constructs a bitset that has
its bits set according to those specified in bits. The third form constructs a bitset using
the string s, beginning at i. The string must contain only 1's and 0's. Only num or
s.size()-i values are used, whichever is less. The constant npos is a value that is
sufficiently large to describe the maximum length of s.

The output operators << and >> are defined for bitset.

bitset contains the following member functions.

Chapter 33:

Member

bool any() const;

size_t count() const;

bitset<N> &flip();
bitset<N> &flip(size_t i);
bool none() const;

bool operator !=(const bitset<N> &op2)
const;

bool operator ==(const bitset<N> &op?2)
const;

bitset<IN>
&operator &=(const bitset<N> &op2);

bitset<N>
&operator ~=(const bitset<N> &op2);

bitset<N>
&operator | =(const bitset<N> &op2);

bitset<N> &operator ~() const;

bitset<N> &operator <<=(size_t 1um),

bitset<N> &operator >>=(size_t nm);

The STL Container Classes

Description

Returns true if any bit in the invoking
bitset is 1; otherwise returns false.

Returns the number of 1 bits.

Reverses the state of all bits in the
invoking bitset and returns *this.

Reverses the bit in position i in the
invoking bitset and returns *this.

Returns true if no bits are set in the
invoking bitset.

Returns true if the invoking bitset
differs from the one specified by
right-hand operator, op2.

Returns true if the invoking bitset is the
same as the one specified by right-hand
operator, op2.

AND:s each bit in the invoking bitset
with the corresponding bit in op2 and
leaves the result in the invoking bitset.
It returns *this.

XORs each bit in the invoking bitset
with the corresponding bit in op2 and
leaves the result in the invoking bitset.
It returns *this.

ORs each bit in the invoking bitset
with the corresponding bit in op2 and
leaves the result in the invoking bitset.
It returns *this.

Reverses the state of all bits in the
invoking bitset and returns the result.

Left-shifts each bit in the invoking
bitset num positions and leaves
the result in the invoking bitset.

It returns *this.

Right-shifts each bit in the invoking
bitset num positions and leaves

the result in the invoking bitset.

It returns *this.

815

816 C++: The Complete Reference

Member Description

reference operator [|(size_t i); Returns a reference to bit i in the
invoking bitset.

bitset<N> &reset(); Clears all bits in the invoking bitset

and returns *this.

bitset<N> &reset(size_t i); Clears the bit in position 7 in the
invoking bitset and returns *this.

bitset<N> &set(); Sets all bits in the invoking bitset and
returns *this.

bitset<N> &set(size_t i, int val = 1); Sets the bit in position 7 to the value
specified by val in the invoking bitset
and returns *this. Any nonzero value
for val is assumed to be 1.

size_t size() const; Returns the number of bits that the
bitset can hold.

bool test(size_t i) const; Returns the state of the bit in position /.

string to_string() const; Returns a string that contains a

representation of the bit pattern
in the invoking bitset.

unsigned long to_ulong() const; Converts the invoking bitset into
an unsigned long integer.

deque

The deque class supports a double-ended queue. Its template specification is
template <class T, class Allocator = allocator<T> > class deque

Here, T is the type of data stored in the deque. It has the following constructors:
explicit deque(const Allocator &a = Allocator());

explicit deque(size_type num, const T &val =T (),
const Allocator &a = Allocator());

deque(const deque<T, Allocator> &ob);

Chapter 33:

The STL Container Classes 817

template <class Inlter> deque(Inlter start, Inlter end,

const Allocator &a = Allocator());

The first form constructs an empty deque. The second form constructs a deque that has
i elements with the value val. The third form constructs a deque that contains the
same elements as ob. The fourth form constructs a deque that contains the elements in

the range specified by start and end.

The following comparison operators are defined for deque:

==, <, <=, !::, >, >=

deque contains the following member functions.

Member

template <class Inlter>
void assign(Inlter start, Inlter end);

void assign(size_type nu, const T &uval);

reference at(size_type i);
const_reference at(size_type i) const;

reference back();
const_reference back() const;

iterator begin();
const_iterator begin() const;

void clear();

bool empty() const;
const_iterator end() const;

iterator end();

iterator erase(iterator i);

iterator erase(iterator start, iterator end);

reference front();
const_reference front() const;

Description

Assigns the deque the sequence
defined by start and end.

Assigns the deque num elements of
value val.

Returns a reference to the element
specified by 1.

Returns a reference to the last element
in the deque.

Returns an iterator to the first element
in the deque.

Removes all elements from the deque.

Returns true if the invoking deque is
empty and false otherwise.

Returns an iterator to the end of
the deque.

Removes the element pointed to by i.
Returns an iterator to the element after
the one removed.

Removes the elements in the range
start to end. Returns an iterator to the
element after the last element removed.

Returns a reference to the first element
in the deque.

818 C++: The Complete Reference

Member

allocator_type get_allocator() const;

iterator insert(iterator i,
const T &ual);

void insert(iterator /, size_type num,
const T &uval);

template <class Inlter>
void insert(iterator i,
Inlter start, Inlter end);

size_type max_size() const;

reference operator| |(size_type i);
const_reference
operator][|(size_type i) const;

void pop_back();
void pop_front();
void push_back(const T &uval);

void push_front(const T &uvul);

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;

void resize(size_type nunt, T val =T ());

size_type size() const;

void swap(deque<T, Allocator> &ob);

Description

Returns deque’s allocator.

Inserts val immediately before the
element specified by i. An iterator
to the element is returned.

Inserts num copies of val immediately
before the element specified by i.

Inserts the sequence defined by start
and end immediately before the
element specified by /.

Returns the maximum number of
elements that the deque can hold.

Returns a reference to the ith element.

Removes the last element in the deque.
Removes the first element in the deque.

Adds an element with the value
specified by val to the end of the deque.

Adds an element with the value
specified by val to the front of the
deque.

Returns a reverse iterator to the end
of the deque.

Returns a reverse iterator to the start
of the deque.

Changes the size of the deque to that
specified by num. If the deque must be
lengthened, then elements with the value
specified by val are added to the end.

Returns the number of elements
currently in the deque.

Exchanges the elements stored in the
invoking deque with those in ob.

Chapter 33: The STL Container Classes 819

list

The list class supports a list. Its template specification is
template <class T, class Allocator = allocator<T> > class list

Here, T is the type of data stored in the list. It has the following constructors:
explicit list(const Allocator &a = Allocator());

explicit list(size_type nim, const T &oal = T (),
const Allocator &a = Allocator());

list(const list<T, Allocator> &ob);

template <class Inlter>list(Inlter start, Inlter end,
const Allocator &a = Allocator());

The first form constructs an empty list. The second form constructs a list that has num
elements with the value val. The third form constructs a list that contains the same elements
as ob. The fourth form constructs a list that contains the elements in the range specified by
start and end.

The following comparison operators are defined for list:

==, </ <=, !::, >, >=

list contains the following member functions.

Member Description
template <class Inlter> Assigns the list the sequence defined
void assign(Inlter start, Inlter end); by start and end.

void assign(size_type num, const T &oval); Assigns the list num elements of
value val.

reference back(); Returns a reference to the last
const_reference back() const; element in the list.
iterator begin(); Returns an iterator to the first

const_iterator begin() const; element in the list.

C++: The Complete Reference

Member

void clear();

bool empty() const;

iterator end();
const_iterator end() const;

iterator erase(iterator i);

iterator erase(iterator start, iterator end);

reference front();
const_reference front() const;

allocator_type get_allocator() const;

iterator insert(iterator i,
const T &ual =T());

void insert(iterator i, size_type num,
const T & val);

template <class Inlter>
void insert(iterator i,
Inlter start, Inlter end),

size_type max_size() const;

void merge(list<T, Allocator> &ob);
template <class Comp>
void merge(<list<T, Allocator> &ob,
Comp cmpfn);

void pop_back();
void pop_front();

Description

Removes all elements from the list.

Returns true if the invoking list is
empty and false otherwise.

Returns an iterator to the end of
the list.

Removes the element pointed to
by i. Returns an iterator to the
element after the one removed.

Removes the elements in the range
start to end. Returns an iterator to
the element after the last element
removed.

Returns a reference to the first
element in the list.

Returns list's allocator.

Inserts val immediately before the
element specified by /. An iterator
to the element is returned.

Inserts num copies of val immediately
before the element specified by /.

Inserts the sequence defined by
start and end immediately before
the element specified by i.

Returns the maximum number of
elements that the list can hold.

Merges the ordered list contained

in ob with the ordered invoking list.
The result is ordered. After the merge,
the list contained in ob is empty.

In the second form, a comparison
function can be specified that
determines when one element

is less than another.

Removes the last element in the list.

Removes the first element in the list.

Chapter 33: The STL Container Classes 821

Member Description

Adds an element with the value
specified by val to the end of the list.

void push_back(const T &uval);

Adds an element with the value
specified by vl to the front of the list.

void push_front(const T &uval);

Returns a reverse iterator to the end
of the list.

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

Removes elements with the value val
from the list.

void remove(const T &ual);

Removes elements for which the
unary predicate pr is true.

template <class UnPred>
void remove_if(UnPred pr);

Returns a reverse iterator to the
start of the list.

reverse_iterator rend();
const_reverse_iterator rend() const;

Changes the size of the list to that
specified by num. If the list must be
lengthened, then elements with the
value specified by val are added to
the end.

void resize(size_type num, T val =T ());

void reverse(); Reverses the invoking list.

Returns the number of elements
currently in the list.

size_type size() const;

Sorts the list. The second form sorts
the list using the comparison function
cmpfin to determine when one element
is less than another.

void sort();
template <class Comp>
void sort(Comp cmpfn);

The contents of ob are inserted

into the invoking list at the Jocation
pointed to by i. After the operation,
ob is empty.

void splice(iterator /,
list<T, Allocator> &ob);

void splice(iterator i,
list<T, Allocator> &ob,
iterator ¢l);

void splice(iterator i,
list<T, Allocator> &ob,

iterator start, iterator end);

The element pointed to by el is
removed from the list ob and stored
in the invoking list at the location
pointed to by .

The range defined by start and end

is removed from ob and stored in the
invoking list beginning at the location

pointed to by .

822 C++: The Complete Reference

Member Description
void swap(list<T, Allocator> &ob); Exchanges the elements stored in the
invoking list with those in ob.
void unique(); Removes duplicate elements from the
template <class BinPred> invoking list. The second form uses pr
void unique(BinPred pr); to determine uniqueness.

map

The map class supports an associative container in which unique keys are mapped
with values. Its template specification is shown here:

template <class Key, class T, class Comp = less<Key>,
class Allocator = allocator<pair<const Key, T > > > class map

Here, Key is the data type of the keys, T is the data type of the values being stored
(mapped), and Comp is a function that compares two keys. It has the following
constructors:

explicit map(const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

map(const map<Key, T, Comp, Allocators> &ob);

template <class Inlter> map(Inlter start, Inlter end,
const Comp &cmipfir = Comp(),
const Allocator &a = Allocator());

The first form constructs an empty map. The second form constructs a map that
contains the same elements as ob. The third form constructs a map that contains the
elements in the range specified by start and end. The function specified by cimpfi, if
present, determines the ordering of the map.

The following comparison operators are defined for map.

==, <, <=, 15, >, >=

The member functions contained by map are shown here. In the descriptions,
key_type is the type of the key, and value_type represents pair<Key, T>.

Chapter 33: The STL Container Classes 823

Member Description

iterator begin(); Returns an iterator to the first
const_iterator begin() const; element in the map.

void clear(); Removes all elements from the map.

size_type count(const key_type &k) const; Returns the number of times k
occurs in the map (1 or zero).

bool empty() const; Returns true if the invoking map is
empty and false otherwise.

iterator end(); Returns an iterator to the end of

const_iterator end() const; the map.

pair<iterator, iterator> Returns a pair of iterators that point
equal_range(const key_type &k); to the first and last elements in the

pair<const_iterator, const_iterator> map that contain the specified key.
equal_range(const key_type &k) const;

void erase(iterator i); Removes the element pointed to by 1.

void erase(iterator start, iterator end); Removes the elements in the range

start to end.

size_type erase(const key_type &k); Removes from the map elements
that have keys with the value k.
iterator find(const key_type &k); Returns an iterator to the specified
const_iterator find(const key_type &k) key. If the key is not found, then
const; an iterator to the end of the map
is returned.
allocator_type getiallocator() const; Returns map's allocator.
iterator insert(iterator /, Inserts val at or after the element
const value_type &uval); specified by i. An iterator to the
element is returned.
template <class Inlter> Inserts a range of elements.
void insert(Inlter start, Inlter end);
pair<iterator, bool> Inserts val into the invoking map.
insert(const value_type &uval); An iterator to the element is

returned. The element is only
inserted if it does not already
exist. If the element was inserted,
pair<iterator, true> is returned.
Otherwise, pair<iterator, false>
is returned.

C++: The Complete Reference

Member

key_compare key_comp() const;

iterator lower_bound(const key_type &k);
const_iterator
lower_bound(const key_type &k) const;

size_type max_size() const;

mapped_type & operator|]
(const key_type &i);

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;

size_type size() const;

void swap(map<Key, T, Comp,
Allocator> &ob);

iterator upper_bound(const key_type &k);
const_iterator
upper_bound(const key_type &k) const;

value_compare value_comp() const;

Description

Returns the function object that
compares keys.

Returns an iterator to the first
element in the map with the key
equal to or greater than k.

Returns the maximum number of
elements that the map can hold.

Returns a reference to the element
specified by i. If this element does
not exist, it is inserted.

Returns a reverse iterator to the end

of the map.

Returns a reverse iterator to the start
of the map.

Returns the number of elements
currently in the map.

Exchanges the elements stored in
the invoking map with those in 0b.

Returns an iterator to the first
element in the map with the key
greater than k.

Returns the function object that
compares values.

multimap

The multimap class supports an associative container in which possibly nonunique
keys are mapped with values. Its template specification is shown here:

template <class Key, class T, class Comp = less<Key>,
class Allocator = allocator<pair<const Key, T > > > class multimap

Here, Key is the data type of the keys, T is the data type of the values being stored
(mapped), and Comp is a function that compares two keys. It has the following
constructors:

Chapter 33: The STL Container Classes

explicit multimap(const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

multimap(const multimap<Key, T, Comp, Allocator> &ob);

template <class Inlter> multimap(Inlter start, Inlter end,
const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

The first form constructs an empty multimap. The second form constructs a multimap
that contains the same elements as ob. The third form constructs a multimap that contains
the elements in the range specified by start and end. The function specified by cmpfn, if
present, determines the ordering of the multimap.

The following comparison operators are defined by multimap:

==, </ <:, !.—_, >/ >=

The member functions contained by multimap are shown here. In the descriptions,

Member
iterator begin();
const_iterator begin() const;

void clear();
size_type count(const key_type &k) const;
bool empty() const;

iterator end();
const_iterator end() const;

pair<iterator, iterator>
equal_range(const key_type &k);

pair<const_titerator, const_iterator>
equal_range(const key_type &k) const;

void erase(iterator i);

void erase(iterator start, iterator end);

key_type is the type of the key, T is the value, and value_type represents pair<Key, T>.

Description

Returns an iterator to the first
element in the multimap.

Removes all elements from the
multimap.

Returns the number of times k occurs
in the multimap.

Returns true if the invoking multimap
is empty and false otherwise.

Returns an iterator to the end of
the list.

Returns a pair of iterators that
point to the first and last elements
in the multimap that contain the
specified key.

Removes the element pointed to by i.

Removes the elements in the range
start to end.

C++: The Complete Reference

Member

size_type erase(const key_type &k);

iterator find(const key_type &k);
const_iterator find(const key_type &k)
const;

allocator_type get_allocator() const;

iterator insert(iterator i,
const value_type &wval);

template <class Inlter>
void insert(Inlter start, Inlter end);

iterator insert(const value_type &uval);
key_compare key_comp() const;

iterator lower_bound(const key_type &k);
const_iterator
lower_bound(const key_type &k) const;

size_type max_size() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;

size_type size() const;

void swap(multimap<Key, T, Comp,
Allocator> &ob);
iterator upper_bound(const key_type &k);
const_iterator
upper_bound(const key_type &k) const;

value_compare value_comp() const;

Description

Removes from the multimap
elements that have keys with
the value k.

Returns an iterator to the specified
key. If the key is not found, then an
iterator to the end of the multimap
is returned.

Returns multimap's allocator.

Inserts val at or after the element
specified by i. An iterator to the
element is returned.

Inserts a range of elements.

Inserts val into the invoking
multimap.

Returns the function object that
compares keys.

Returns an iterator to the first
element in the multimap with
the key equal to or greater than k.

Returns the maximum number of
elements that the multimap can hold.

Returns a reverse iterator to the end
of the multimap.

Returns a reverse iterator to the start
of the multimap.

Returns the number of elements
currently in the multimap.

Exchanges the elements stored in the
invoking multimap with those in ob.

Returns an iterator to the first element
in the multimap with the key greater
than k.

Returns the function object that
compares values.

Chapter 33: The STL Container Classes

multiset

The multiset class supports a set containing possibly nonunique keys. Its template
specification is shown here:

template <class Key, class Comp = less<Key>,
class Allocator = allocator<Key> > class multiset

Here, Key is the data of the keys and Comp is a function that compares two keys. It has
the following constructors:

explicit multiset(const Comp &cmpfin = Comp(),
const Allocator &a = Allocator());

multiset(const multiset<Key, Comp, Allocator> &ob);

template <class Inlter> multiset(Inlter start, Inlter end,
const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

The first form constructs an empty multiset. The second form constructs a multiset that
contains the same elements as ob. The third form constructs a multiset that contains the
elements in the range specified by start and end. The function specified by cmpfn, if present,
determines the ordering of the set.

The following comparison operators are defined for multiset.

==, <, <=,1=,>,>=

The member functions contained by multiset are shown here. In the descriptions,
both key_type and value_type are typedefs for Key.

Member Description

iterator begin(); Returns an iterator to the first

const_iterator begin() const; element in the multiset.

void clear(); Removes all elements from the
multiset.

size_type count(const key_type &k) const; Returns the number of times k occurs
in the multiset.

bool empty() const; Returns true if the invoking multiset
is empty and false otherwise.

827

C++: The Complete Reference

Member

iterator end();
const_iterator end() const;

pair<iterator, iterator>
equal_range(const key_type &k) const;

void erase(iterator i);

void erase(iterator start, iterator end);
size_type erase(const key_type &k);

iterator find(const key_type &k) const;

allocator_type get_allocator() const;

iterator insert(iterator i,
const value_type &uval);

template <class Inlter>
void insert(Inlter start, Inlter end);

iterator insert(const value_type &uval);
key_compare key_comp() const;

iterator lower_bound(const key_type &k)
const;

size_type max_size() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;

Description

Returns an iterator to the end of the
multiset.

Returns a pair of iterators that point
to the first and last elements in the
multiset that contain the specified key.

Removes the element pointed to by /.

Removes the elements in the range
start to end.

Removes from the multiset elements
that have keys with the value k.

Returns an iterator to the specified
key. If the key is not found, then an
iterator to the end of the multiset is
returned.

Returns multiset's allocator.

Inserts val at or after the element
specified by i. An iterator to the
element is returned.

Inserts a range of elements.

Inserts val into the invoking multiset.
An iterator to the element is returned.

Returns the function object that
compares keys.

Returns an iterator to the first
element in the multiset with the
key equal to or greater than k.

Returns the maximurn number of
elements that the multiset can hold.

Returns a reverse iterator to the end
of the multiset.

Returns a reverse iterator to the start
of the multiset.

Chapter 33: The STL Container Classes 829

Member Description
size_type size() const; Returns the number of elements
currently in the multiset.
void swap(multiset<Key, Comp, Exchanges the elements stored in the
Allocator> &ob); invoking multiset with those in 0b.

iterator upper_bound(const key_type &k) Returns an iterator to the first
const; element in the multiset with the
key greater than k.

value_compare value_comp() const; Returns the function object that
compares values.

queue

The queue class supports a single-ended queue. Its template specification is shown here:
template <class T, class Container = deque<T> > class queue

Here, T is the type of data being stored and Container is the type of container used to
hold the queue. It has the following constructor:

explicit queue(const Container &cnt = Container());

The queue() constructor creates an empty queue. By default it uses a deque as a container,
but a queue can only be accessed in a first-in, first-out manner. You can also use a list
as a container for a queue. The container is held in a protected object called ¢ of type

Container.
The following comparison operators are defined for queue:

==, <, <=, !:’ >, >=

queue contains the following member functions.

Member Description

value_type &back(); Returns a reference to the last
const value_type &back() const; element in the queue.

bool empty() const; Returns true if the invoking queue

is empty and false otherwise.

830 C++: The Complete Reference

Member Description

value_type &front(); Returns a reference to the first

const value_type &front() const; element in the queue.

void pop(); Removes the first element in
the queue.

void push(const value_type &val); Adds an element with the value
specified by val to the end of
the queue.

size_type size() const; Returns the number of elements

currently in the queue.

priority_queue

The priority_queue class supports a single-ended priority queue. Its template
specification is shown here:

template <class T, class Container = vector<T>,
class Comp = less<C0ntainer::value_type> >
class priority_queue

Here, T is the type of data being stored. Container is the type of container used to hold
the queue, and Comp specifies the comparison function that determines when one
member for the priority queue is lower in priority than another. It has the following
constructors:

explicit priority_queue(const Comp &cmpfin = Comp(),
Container &cnt = Container());

template <class Inlter> priority_queue(Inlter start, Inlter end,
const Comp &cmpfin = Comp(),
Container &cnt = Container());

The first priority_queue() constructor creates an empty priority queue. The second

creates a priority queue that contains the elements specified by the range start and end.

By default it uses a vector as a container. You can also use a deque as a container for

a priority queue. The container is held in a protected object called ¢ of type Container.
priority_queue contains the following member functions.

Chapter 33: The STL Container Classes 831

Member Description

bool empty() const; Returns true if the invoking priority queue is
empty and false otherwise.

void pop(); Removes the first element in the priority queue.

void push(const T &uval); Adds an element to the priority queue.

size_type size() const; Returns the number of elements current in the

priority queue.

const value_type &top() const; Returns a reference to the element with the
highest priority. The element is not removed.

set
The set class supports a set containing unique keys. Its template specification is
shown here:

template <class Key, class Comp = less<Key>,
class Allocator = allocator<Key> > class set

Here, Key is the data of the keys and Comp is a function that compares two keys. It has
the following constructors:

explicit set(const Comp &cmpfin = Comp(),
const Allocator &a = Allocator());

set(const set<Key, Comp, Allocator> &ob);

template <class Inlter> set(Inlter start, Inlter end,
const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

The first form constructs an empty set. The second form constructs a set that contains the
same elements as ob. The third form constructs a set that contains the elements in the range
specified by start and end. The function specified by cmpfi, if present, determines the
ordering of the set.

The following comparison operators are defined for set:

==, <, <=, I=, >, >=

832 C++: The Complete Reference

The member functions contained by set are shown here.

Member

iterator begin();
const_iterator begin() const;

void clear();

size_type count(const key_type &k) const;
bool empty() const;

const_iterator end() const;

iterator end();

pair<iterator, iterator>

equal_range(const key_type &k) const;

void erase(iterator i);

void erase(iterator start, iterator end);

size_type erase(const key_type &k);

iterator find(const key_type &k) const;

allocator_type get_allocator() const;

iterator insert(iterator i,
const value_type &uval);

template <class Inlter>
void insert(Inlter start, Inlter end);

Description

Returns an iterator to the first
element in the set.

Removes all elements from the set.

Returns the number of times k
occurs in the set.

Returns true if the invoking set is
empty and false otherwise.

Returns an iterator to the end of
the set.

Returns a pair of iterators that point
to the first and last elements in the
set that contain the specified key.

Removes the element pointed to by 1.

Removes the elements in the range
start to end.

Removes from the set elements that
have keys with the value k. The
number of elements removed is
returned.

Returns an iterator to the specified
key. If the key is not found, then
an iterator to the end of the set is
returned.

Returns set's allocator.

Inserts val at or after the element
specified by i. Duplicate elements
are not inserted. An iterator to the
element is returned.

Inserts a range of elements.
Duplicate elements are not inserted.

Chapter 33:

Member

pair<iterator, bool>
insert(const value_type &uval);

iterator lower_bound(const key_type &k)
const;

key_compare key_comp() const;
size_type max_size() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;

size_type size() const;

void swap(set<Key, Comp,Allocator> &ob);

iterator upper_bound(const key_type &Kk)
const;

value_compare value_comp() const;

The STL Container Classes

Description

Inserts zal into the invoking set. An
iterator to the element is returned.
The element is inserted only if it
does not already exist. If the element
was inserted, pair<iterator, true> is
returned. Otherwise, pair<iterator,
false> is returned.

Returns an iterator to the first
element in the set with the key
equal to or greater than k.

Returns the function object that
compares keys.

Returns the maximum number of
elements that the set can hold.

Returns a reverse iterator to the end
of the <ot

Returns a reverse iterator to the start
of the set.

Returns the number of clements
currently in the set.

Exchanges the elements stored in
the invoking set with those in ob.

Returns an iterator to the first
element in the set with the key
greater than k.

Returns the function object that
compares values.

833

stack

The stack class supports a stack. Its template specification is shown here:

template <class T, class Container = deque<T> > class stack

834 C++: The Complete Reference

Here, T is the type of data being stored and Container is the type of container used to
hold the stack. It has the following constructor:

explicit stack(const Container &cnt = Container());

The stack() constructor creates an empty stack. By default it uses a deque as a container,
but a stack can only be accessed in a last-in, first-out manner. You may also use a vector
or list as a container for a stack. The container is held in a protected member called ¢ of
type Container.

The following comparison operators are defined for stack:

==, <, <:’ !:’ >/ >=

stack contains the following member functions.

Member

bool empty() const;

void pop();

Description

Returns true if the invoking stack is
empty and false otherwise.

Removes the top of the stack, which

is technically the last element in the
container.

Pushes an element onto the end of the
stack. The last element in the container
represents the top of the stack.

void push(const value_type &uval);

Returns the number of elements
currently in the stack.

size_type size() const;

Returns a reference to the top of the
stack, which is the last element in the
container. The element is not removed.

value_type &top();
cont value_type &top() const;

vector

The vector class supports a dynamic array. Its template specification is shown here.
template <class T, class Allocator = allocator<T> > class vector

Here, T is the type of data being stored and Allocator specifies the allocator. It has the
following constructors.

Chapter 33: The STL Container Classes 835

explicit vector(const Allocator &a = Allocator());

explicit vector(size_type num, const T &val = T (),
const Allocator &a = Allocator());

vector(const vector<T, Allocator> &ob);

template <class Inlter> vector(Inlter start, Inlter end,
const Allocator &a = Allocator());

The first form constructs an empty vector. The second form constructs a vector that has
num elements with the value val. The third form constructs a vector that contains the
same elements as ob. The fourth form constructs a vector that contains the elements in
the range specified by start and end.

The following comparison operators are defined for vector:

==, <, <::, !:/ :>, >=

vector contains the following member functions.

Member Description

template <class Inlter> Assigns the vector the sequence
void assign(Inlter start, Inlter end); defined by start and end.

void assign(size_type num, const T &val); Assigns the vector num elements of

value val.

reference at(size_type i); Returns a reference to an element

const_reference at(size_type i) const; specified by .

reference back(); Returns a reference to the last

const_reference back() const; element in the vector.

iterator begin(); Returns an iterator to the first

const_iterator begin() const; element in the vector.

size_type capacity() const; Returns the current capacity of

the vector. This is the number of
elements it can hold before it will
need to allocate more memory.

void clear(); Removes all elements from the vector.

bool empty() const; Returns true if the invoking vector is
empty and false otherwise.

C++: The Complete Reference

Member

iterator end();
const_iterator end() const;

iterator erase(iterator 7);

iterator erase(iterator start, iterator end);

reference front();
const_reference front() const;

allocator_type get_allocator() const;

iterator insert(iterator i, const T &uval);

void insert(iterator i, size_type niom,
const T & wval);

template <class Inlter>
void insert(iterator i, Inlter start,
Inlter end);

size_type max_size() const;

reference operator| |(size_type i) const;
const_reference operator|](size_type i)
const;

void pop_back();
void push_back(const T &uval);

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;

Description

Returns an iterator to the 2nd of
the vector.

Removes the element pointed to by i.
Returns an iterator to the element after
the one removed.

Removes the elements in the range
start to end. Returns an iterator to
the element after the last element
removed.

Returns a reference to the first
element in the vector.

Returns vector's allocator.

Inserts val immediately before the
element specified by i. An iterator
to the element is returned.

Inserts num copies of val immediately
before the element specified by i.

Inserts the sequence defined by
start and end immediately before
the element specified by i.

Returns the maximum number of
elements that the vector can hold.

Returns a reference to the element
specified by 1.

Removes the last element in the vector.

Adds an element with the value
specified by val to the end of
the vector.

Returns a reverse iterator to the end
of the vector.

Returns a reverse iterator to the start
of the vector.

Chapter 33: The STL Container Classes

Member

void reserve(size_type num);

void resize(size_type num, T val = T ());

size_type size() const;

void swap(vector<T, Allocator> &ob);

Description

Sets the capacity of the vector so that
it is equal to at least num.

Changes the size of the vector to that
specified by num. If the vector must
be lengthened, then elements with
the value specified by val are added
to the end.

Returns the number of elements
currently in the vector.

Exchanges the elements stored in the
invoking vector with those in ob.

The STL also contains a specialization of vector for Boolean values. It includes all of
the functionality of vector and adds these two members.

void flip();

static void swap(reference i, reference j);

Reverses all bits in the vector.

Exchanges the bits specified by i
and ;.

837

